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Equilibrium isotope effects (EIEs) provide invaluable information
concerned with both molecular structure and the determination of
reaction mechanisms. For example, the influence of partial deute-
rium substitution on the chemical shift of a fluxional transition metal
methyl compound may be used to provide evidence as to whether
or not there exists an agostic interaction.1 Furthermore, knowledge
of EIEs is essential for interpreting kinetic isotope effects associated
with multistep reactions.2 In this paper, we report EIE calculations
pertaining to the interaction of H-H and C-H bonds with transition
metal centers (Scheme 1). These calculations (i) demonstrate that
the EIEs for coordination and oxidative addition of C-H bonds
have fundamentally different EIE temperature profiles and (ii)
provide a possible explanation for the previous experimental
observations of both normal and inverse EIEs for coordination of
alkanes.

Previous studies have demonstrated that the EIEs for both
coordination and oxidative addition of H2 to a transition metal center
are invariably characterized by inverse EIEs (i.e.,KH/KD < 1),3

such that the corresponding interactions with D2 are thermodynami-
cally more favored than the interaction with H2.4 While there are
fewer studies concerned with the EIEs for coordination and oxi-
dative addition of C-H bonds, it is evident that there are interesting
differences with the corresponding reactions of H-H bonds. Thus,
whereas oxidative addition of the H-H bond is characterized by
an inverse EIE, oxidative addition of a C-H bond is characterized
by a normal EIE.5,6 Even more unusual, both normal and inverse
EIEs have been reported forcoordinationof a C-H bond. Spe-
cifically, Geftakis and Ball reported a normal EIE (1.33 at-93
°C) for coordination of cyclopentane to [CpRe(CO)2],7 whereas
Bergman and Moore reported substantially inverse EIEs for the
coordination of cyclohexane (∼0.1 at-100 °C) and neopentane
(∼0.07 at-108 °C) to [Cp*Rh(CO)].8 In view of these differing
results, Bullock and Bender have pointed out that the issue of
whether coordination of an alkane would be characterized by a nor-
mal or inverse EIE is not trivial.2b For this reason, we decided to
analyze in detail the EIEs for both coordination and oxidative
addition of methane to{[H2Si(C5H4)2]W} using DFT (B3LYP)
calculations.9

Equilibrium isotope effects are typically calculated by the
expression EIE) KH/KD ) SYM‚MMI ‚EXC‚ZPE, where SYM is
the symmetry factor, MMI is the mass-moment of inertia term, EXC
is the excitation term, and ZPE is the zero point energy term.10

The EIE calculated for coordination of CH4 and CD4 to {[H2Si-
(C5H4)2]W}, as determined using the computed frequencies of the
σ-complexes, [H2Si(C5H4)2]W(σ-HCH3) and [H2Si(C5H4)2]W(σ-
DCD3),11 is 1.45 at 100°C. While the observation of a normal EIE
is in accord with that reported for coordination of cyclopentane to
[CpRe(CO)2],7 it is not in accord with the inverse EIEs reported
for coordination of cyclohexane and neopentane to [Cp*Rh(CO)].8

In an effort to reconcile the observation of both normal and inverse

EIEs for coordination of a C-H bond, we postulated that the normal
EIE for {[H2Si(C5H4)2]W} could become inverse at low temper-
ature, i.e., conditions under which the experimental measurements
on [Cp*Rh(CO)] were made.8 However, rather than becoming
inverse, the EIE for{[H2Si(C5H4)2]W} at -100°C (1.57) actually
increasedslightly from the value at 100°C (1.45). This result was
also counter to Bender’s calculation that the EIE for coordination
of methane to OsCl2(PH3)2 decreases as the temperature is
reduced.12 To probe these differing results in more detail, the full
temperature dependence of the EIE for coordination of methane to
{[H2Si(C5H4)2]W} was determined.

Interestingly, as illustrated in Figure 1, the EIE for coordination
of methane to{[H2Si(C5H4)2]W} doesnot vary with temperature
in the simple monotonic manner predicted by the van’t Hoff
relationship, for which the EIE would be expected either to increase
or decrease progressively with temperature. Rather, the temperature
dependence of the EIE exhibits a maximum: the EIE is 0 at 0 K,
increases to a maximum value of 1.57, and then decreases to unity
at infinite temperature.13 Thus, depending upon the temperature,
both normal (>69 K) and inVerse (<69 K) EIEs may be obtained
for coordination of a C-H bond in the same system. The precise
form of the temperature dependence of the EIE is determined by
the magnitudes and temperature dependencies of the individual

Figure 1. Calculated EIE as a function of temperature for coordination of
CH4 and CD4 to {[H2Si(C5H4)2]W}. The temperature dependence of the
individual EXC and ZPE components, as well as the combined [SYM‚
MMI ‚EXC] function, are also included.
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SYM, MMI, EXC, and ZPE terms. Since the SYM (1.00) and MMI
(3.62) terms are temperature independent,14 the occurrence of a
maximum is a result of the opposing temperature dependencies of
the ZPE and EXC terms, as illustrated in Figure 1.15 It is also worth
noting that the ZPE and EXC terms are alwayse1 and thereby
favor an inverse EIE atall temperatures. However, these terms are
mitigated by the large MMI term (3.62), such that the EIE becomes
normal at temperaturesgca. -200 °C.

While both the ZPE and the EXC terms aree1, it is evident
that it is the ZPE term (which is zero at 0 K) which is the dominant
inverse component of the EIE at low temperatures. At high
temperatures, the EXC term becomes the most inverse component,
but because this approaches 1/MMI (and not zero) at infinite
temperature,15,16 it is incapable of causing the EIE to become
inverse. In view of the relationship between EXC and MMI at high
temperature, it is useful to analyze the temperature dependence of
the EIE in terms of the combined [SYM‚MMI ‚EXC] term (i.e.,
the dominant terms that influence entropy component of the EIE)
and the ZPE term (i.e., the dominant term that influences the
enthalpy component of the EIE). Since EXC is unity at 0 K and
becomes 1/MMI in the limit of infinite temperature, the product
MMI ‚EXC varies from MMI to unity over this temperature range.
Thus, at all temperatures, the [SYM‚MMI ‚EXC] entropy component
is g1 and favors a normal EIE, while the ZPE enthalpy component
favors an inverse EIE. At high temperatures, the [SYM‚MMI ‚EXC]
entropy component dominates, and the EIE is normal, while at low
temperatures, the ZPE enthalpy component dominates, and the EIE
is inverse.

If the EIEs for coordination of C-H bonds in other systems were
to exhibit a profile similar to that for coordination of methane to
{[H2Si(C5H4)2]W}, it provides a means to rationalize the literature
reports of both normal7 and inverse8 EIEs for alkane coordination.
However, it should be recognized that the exact form of the profile
and whether or not a maximum exists will depend critically on (i)
the nature of theσ-complex and its corresponding vibrational
frequencies and (ii) the MMI component. The latter term is very
sensitive to the size of the coordinating organic molecule; for
example, the MMI term is greater for methane than for cyclohexane
because methane is smaller and substitution by deuterium influences
the mass and moment of inertia to a greater extent than that for
cyclohexane. Thus, the [SYM‚MMI ‚EXC] entropy term that favors
a normal EIE would be expected to be less significant for
coordination of cyclohexane. The ZPE term is quantitatively more
difficult to evaluate in a general manner because it depends on the
precise structure of theσ-complex. The existence of a maximum
in the EIE profile, however, requires that the ZPE term is less than
unity; correspondingly, if the ZPE term were to be greater than
unity, a normal EIE would be observed at all temperatures because
the ZPE term now reinforces the normal [SYM‚MMI ‚EXC]
component.

In addition to investigating the EIE for coordination of methane,
we have also calculated the EIE for oxidative addition to{[H2Si-
(C5H4)2]W} (Figure 2). The analysis reveals that the EIE for
oxidative addition is normal atall temperatures and exponentially
approaches infinity at 0 K. The dramatically different temperature
dependencies of the EIEs for methane coordination and oxidative
addition are specifically associated with the ZPE terms: the ZPE
term for coordination of methane is inverse at all temperatures (and
zero at 0 K), while the ZPE term for oxidative addition is normal
at all temperatures and approaches infinity at 0 K.

The ZPE term for coordination of methane is inverse because
association results in the creation of six additional isotope sensitive
vibrations that are derived from rotational and translational degrees

of freedom of methane.17 The combined ZPE associated with these
new isotopically sensitive vibrations is sufficient that it results in
the ZPE change for [H2Si(C5H4)2]W(σ-HMe) upon isotopic sub-
stitution being greater than that for methane. In contrast, the
isotopically sensitive vibrations associated with the W-H bond of
the methyl hydride complex [H2Si(C5H4)2]W(Me)H, namely a
W-H stretch and two bends, are of sufficiently low energy that
they do not counter those associated with the C-H bond that has
been broken. As a result, the ZPE term for oxidative addition of
the C-H bond isg1. Since the [SYM‚MMI ‚EXC] entropy term
is also required to beg1 (vide supra), the EIE for oxidative addition
is normal at all temperatures. Given that oxidative addition of
methane involves the sequence of (i) coordination of methane
followed by (ii) oxidative cleavage of [H2Si(C5H4)2]W(σ-HMe) to
[H2Si(C5H4)2]W(Me)H (Scheme 1), a corollary to the above
discussion is that the EIE for the latter transformation is normal at
all temperatures (Figure 3).

In contrast to the normal EIEs that have been reported for
oxidative addition of a C-H bond,5 oxidative addition of H2 has
so far only been characterized by inverse EIEs.4 We were, therefore,
interested in determining the temperature dependence of the EIE
for oxidative addition of H2 and D2 to {[H2Si(C5H4)2]W} in an
effort to ascertain whether it is possible for the oxidative addition
of H2 to be characterized by a normal EIE. Significantly, the
calculations indicate that while the EIE for oxidative addition of
H2 is inverse at low temperature, it does indeed become normal at
higher temperature (358 K), as illustrated in Figure 4.18

The temperature profile for the EIE for oxidative addition of H2

(Figure 4) is thusVery different from that for oxidative addition of
CH4 (Figure 2). The origin of this difference is that the ZPE

Figure 2. Calculated EIE as a function of temperature for oxidative addition
of CH4 and CD4 to {[H2Si(C5H4)2]W}. Note that the EIE approaches infinity
at low temperature, whereas that for coordination approaches zero.

Figure 3. Markedly different temperature dependencies of the EIEs for
coordination and oxidative addition of CH4 and CD4 to {[H2Si(C5H4)2]W}.
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component of the EIE for oxidative addition of CH4 is g1, whereas
that for oxidative addition of H2 is e1. The difference in the ZPE
terms results from the fact that oxidative addition of H2 results in
a greater number of significantly sensitive isotopic vibrations than
does oxidative addition of CH4. This is a consequence of H2 being
a linear molecule with a single isotopically sensitive vibration, while
the dihydride [H2Si(C5H4)2]WH2 has six isotopically sensitive
vibrations (two stretches and four bends).

In summary, coordination of an X-H bond (X ) Me, H) to a
metal center (X) Me, H) results in an increase in the number of
isotopically sensitive vibrations derived from translational and
rotational degrees of freedom of the X-H molecule, regardless of
the nature of X. The existence of these new vibrational modes
causes the ZPE component of the EIE to bee1, with the result
that the EIE is predicted to be inverse at low temperature and normal
at high temperature. Similar behavior is also predicted for the
temperature dependence of the EIE for oxidative addition of H2,
for which ZPEe 1. However, the ZPE term for oxidative addition
of C-H bonds isg1, and the EIE is predicted to be normal at all
temperatures and increase in magnitude as the temperature is
lowered.
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Figure 4. Calculated EIE as a function of temperature for oxidative addition
of H2 and D2 to {[H2Si(C5H4)2]W}. The temperature dependence of the
individual EXC and ZPE components, as well as the combined [SYM‚
MMI ‚EXC] function, are also included. Note that the EIE remains inverse
at a higher temperature than that for coordination of CH4 and CD4.
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